0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 AND
↳7 IDP
↳8 IDependencyGraphProof (⇔)
↳9 TRUE
↳10 IDP
↳11 IDependencyGraphProof (⇔)
↳12 TRUE
/**
* A very simple loop over an array.
*
* All calls terminate.
*
* Julia + BinTerm prove that all calls terminate
*
* @author <A HREF="mailto:fausto.spoto@univr.it">Fausto Spoto</A>
*/
public class Loop1 {
public static void main(String[] args) {
for (int i = 0; i < args.length; i++) {}
}
}
Generated 8 rules for P and 2 rules for R.
Combined rules. Obtained 1 rules for P and 0 rules for R.
Filtered ground terms:
107_0_main_Load(x1, x2, x3, x4) → 107_0_main_Load(x2, x3, x4)
Cond_107_0_main_Load(x1, x2, x3, x4, x5) → Cond_107_0_main_Load(x1, x3, x4, x5)
Filtered duplicate args:
107_0_main_Load(x1, x2, x3) → 107_0_main_Load(x1, x3)
Cond_107_0_main_Load(x1, x2, x3, x4) → Cond_107_0_main_Load(x1, x2, x4)
Combined rules. Obtained 1 rules for P and 0 rules for R.
Finished conversion. Obtained 1 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((x2[0] >= 0 && x2[0] < x0[0] →* TRUE)∧(java.lang.Object(ARRAY(x0[0], x1[0])) →* java.lang.Object(ARRAY(x0[1], x1[1])))∧(x2[0] →* x2[1]))
(1) -> (0), if ((java.lang.Object(ARRAY(x0[1], x1[1])) →* java.lang.Object(ARRAY(x0[0], x1[0])))∧(x2[1] + 1 →* x2[0]))
(1) (&&(>=(x2[0], 0), <(x2[0], x0[0]))=TRUE∧java.lang.Object(ARRAY(x0[0], x1[0]))=java.lang.Object(ARRAY(x0[1], x1[1]))∧x2[0]=x2[1] ⇒ 107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])≥NonInfC∧107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])≥COND_107_0_MAIN_LOAD(&&(>=(x2[0], 0), <(x2[0], x0[0])), java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])∧(UIncreasing(COND_107_0_MAIN_LOAD(&&(>=(x2[0], 0), <(x2[0], x0[0])), java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])), ≥))
(2) (>=(x2[0], 0)=TRUE∧<(x2[0], x0[0])=TRUE ⇒ 107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])≥NonInfC∧107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])≥COND_107_0_MAIN_LOAD(&&(>=(x2[0], 0), <(x2[0], x0[0])), java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])∧(UIncreasing(COND_107_0_MAIN_LOAD(&&(>=(x2[0], 0), <(x2[0], x0[0])), java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])), ≥))
(3) (x2[0] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_107_0_MAIN_LOAD(&&(>=(x2[0], 0), <(x2[0], x0[0])), java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])), ≥)∧[(-1)Bound*bni_13] + [(-1)bni_13]x2[0] + [bni_13]x0[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(4) (x2[0] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_107_0_MAIN_LOAD(&&(>=(x2[0], 0), <(x2[0], x0[0])), java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])), ≥)∧[(-1)Bound*bni_13] + [(-1)bni_13]x2[0] + [bni_13]x0[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(5) (x2[0] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_107_0_MAIN_LOAD(&&(>=(x2[0], 0), <(x2[0], x0[0])), java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])), ≥)∧[(-1)Bound*bni_13] + [(-1)bni_13]x2[0] + [bni_13]x0[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(6) (x2[0] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_107_0_MAIN_LOAD(&&(>=(x2[0], 0), <(x2[0], x0[0])), java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])), ≥)∧0 = 0∧[(-1)Bound*bni_13] + [(-1)bni_13]x2[0] + [bni_13]x0[0] ≥ 0∧0 = 0∧[(-1)bso_14] ≥ 0)
(7) (x2[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_107_0_MAIN_LOAD(&&(>=(x2[0], 0), <(x2[0], x0[0])), java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])), ≥)∧0 = 0∧[(-1)Bound*bni_13 + bni_13] + [bni_13]x0[0] ≥ 0∧0 = 0∧[(-1)bso_14] ≥ 0)
(8) (COND_107_0_MAIN_LOAD(TRUE, java.lang.Object(ARRAY(x0[1], x1[1])), x2[1])≥NonInfC∧COND_107_0_MAIN_LOAD(TRUE, java.lang.Object(ARRAY(x0[1], x1[1])), x2[1])≥107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1], x1[1])), +(x2[1], 1))∧(UIncreasing(107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1], x1[1])), +(x2[1], 1))), ≥))
(9) ((UIncreasing(107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1], x1[1])), +(x2[1], 1))), ≥)∧[1 + (-1)bso_16] ≥ 0)
(10) ((UIncreasing(107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1], x1[1])), +(x2[1], 1))), ≥)∧[1 + (-1)bso_16] ≥ 0)
(11) ((UIncreasing(107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1], x1[1])), +(x2[1], 1))), ≥)∧[1 + (-1)bso_16] ≥ 0)
(12) ((UIncreasing(107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1], x1[1])), +(x2[1], 1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_16] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(107_0_MAIN_LOAD(x1, x2)) = [-1] + [-1]x2 + [-1]x1
POL(java.lang.Object(x1)) = x1
POL(ARRAY(x1, x2)) = [-1] + [-1]x1
POL(COND_107_0_MAIN_LOAD(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(0) = 0
POL(<(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
COND_107_0_MAIN_LOAD(TRUE, java.lang.Object(ARRAY(x0[1], x1[1])), x2[1]) → 107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1], x1[1])), +(x2[1], 1))
107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]) → COND_107_0_MAIN_LOAD(&&(>=(x2[0], 0), <(x2[0], x0[0])), java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])
107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]) → COND_107_0_MAIN_LOAD(&&(>=(x2[0], 0), <(x2[0], x0[0])), java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer