(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: Loop1
/**
* A very simple loop over an array.
*
* All calls terminate.
*
* Julia + BinTerm prove that all calls terminate
*
* @author <A HREF="mailto:fausto.spoto@univr.it">Fausto Spoto</A>
*/

public class Loop1 {
public static void main(String[] args) {
for (int i = 0; i < args.length; i++) {}
}
}

(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
Loop1.main([Ljava/lang/String;)V: Graph of 18 nodes with 1 SCC.


(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Logs:


Log for SCC 0:

Generated 8 rules for P and 2 rules for R.


Combined rules. Obtained 1 rules for P and 0 rules for R.


Filtered ground terms:


107_0_main_Load(x1, x2, x3, x4) → 107_0_main_Load(x2, x3, x4)
Cond_107_0_main_Load(x1, x2, x3, x4, x5) → Cond_107_0_main_Load(x1, x3, x4, x5)

Filtered duplicate args:


107_0_main_Load(x1, x2, x3) → 107_0_main_Load(x1, x3)
Cond_107_0_main_Load(x1, x2, x3, x4) → Cond_107_0_main_Load(x1, x2, x4)

Combined rules. Obtained 1 rules for P and 0 rules for R.


Finished conversion. Obtained 1 rules for P and 0 rules for R. System has predefined symbols.


(4) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]) → COND_107_0_MAIN_LOAD(x2[0] >= 0 && x2[0] < x0[0], java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])
(1): COND_107_0_MAIN_LOAD(TRUE, java.lang.Object(ARRAY(x0[1], x1[1])), x2[1]) → 107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1], x1[1])), x2[1] + 1)

(0) -> (1), if ((x2[0] >= 0 && x2[0] < x0[0]* TRUE)∧(java.lang.Object(ARRAY(x0[0], x1[0])) →* java.lang.Object(ARRAY(x0[1], x1[1])))∧(x2[0]* x2[1]))


(1) -> (0), if ((java.lang.Object(ARRAY(x0[1], x1[1])) →* java.lang.Object(ARRAY(x0[0], x1[0])))∧(x2[1] + 1* x2[0]))



The set Q is empty.

(5) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0, x1)), x2) → COND_107_0_MAIN_LOAD(&&(>=(x2, 0), <(x2, x0)), java.lang.Object(ARRAY(x0, x1)), x2) the following chains were created:
  • We consider the chain 107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]) → COND_107_0_MAIN_LOAD(&&(>=(x2[0], 0), <(x2[0], x0[0])), java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]), COND_107_0_MAIN_LOAD(TRUE, java.lang.Object(ARRAY(x0[1], x1[1])), x2[1]) → 107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1], x1[1])), +(x2[1], 1)) which results in the following constraint:

    (1)    (&&(>=(x2[0], 0), <(x2[0], x0[0]))=TRUEjava.lang.Object(ARRAY(x0[0], x1[0]))=java.lang.Object(ARRAY(x0[1], x1[1]))∧x2[0]=x2[1]107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])≥NonInfC∧107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])≥COND_107_0_MAIN_LOAD(&&(>=(x2[0], 0), <(x2[0], x0[0])), java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])∧(UIncreasing(COND_107_0_MAIN_LOAD(&&(>=(x2[0], 0), <(x2[0], x0[0])), java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])), ≥))



    We simplified constraint (1) using rules (I), (II), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>=(x2[0], 0)=TRUE<(x2[0], x0[0])=TRUE107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])≥NonInfC∧107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])≥COND_107_0_MAIN_LOAD(&&(>=(x2[0], 0), <(x2[0], x0[0])), java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])∧(UIncreasing(COND_107_0_MAIN_LOAD(&&(>=(x2[0], 0), <(x2[0], x0[0])), java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x2[0] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_107_0_MAIN_LOAD(&&(>=(x2[0], 0), <(x2[0], x0[0])), java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])), ≥)∧[(-1)Bound*bni_13] + [(-1)bni_13]x2[0] + [bni_13]x0[0] ≥ 0∧[(-1)bso_14] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x2[0] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_107_0_MAIN_LOAD(&&(>=(x2[0], 0), <(x2[0], x0[0])), java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])), ≥)∧[(-1)Bound*bni_13] + [(-1)bni_13]x2[0] + [bni_13]x0[0] ≥ 0∧[(-1)bso_14] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x2[0] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_107_0_MAIN_LOAD(&&(>=(x2[0], 0), <(x2[0], x0[0])), java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])), ≥)∧[(-1)Bound*bni_13] + [(-1)bni_13]x2[0] + [bni_13]x0[0] ≥ 0∧[(-1)bso_14] ≥ 0)



    We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (6)    (x2[0] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_107_0_MAIN_LOAD(&&(>=(x2[0], 0), <(x2[0], x0[0])), java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])), ≥)∧0 = 0∧[(-1)Bound*bni_13] + [(-1)bni_13]x2[0] + [bni_13]x0[0] ≥ 0∧0 = 0∧[(-1)bso_14] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    (x2[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_107_0_MAIN_LOAD(&&(>=(x2[0], 0), <(x2[0], x0[0])), java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])), ≥)∧0 = 0∧[(-1)Bound*bni_13 + bni_13] + [bni_13]x0[0] ≥ 0∧0 = 0∧[(-1)bso_14] ≥ 0)







For Pair COND_107_0_MAIN_LOAD(TRUE, java.lang.Object(ARRAY(x0, x1)), x2) → 107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0, x1)), +(x2, 1)) the following chains were created:
  • We consider the chain COND_107_0_MAIN_LOAD(TRUE, java.lang.Object(ARRAY(x0[1], x1[1])), x2[1]) → 107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1], x1[1])), +(x2[1], 1)) which results in the following constraint:

    (8)    (COND_107_0_MAIN_LOAD(TRUE, java.lang.Object(ARRAY(x0[1], x1[1])), x2[1])≥NonInfC∧COND_107_0_MAIN_LOAD(TRUE, java.lang.Object(ARRAY(x0[1], x1[1])), x2[1])≥107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1], x1[1])), +(x2[1], 1))∧(UIncreasing(107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1], x1[1])), +(x2[1], 1))), ≥))



    We simplified constraint (8) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (9)    ((UIncreasing(107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1], x1[1])), +(x2[1], 1))), ≥)∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (9) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (10)    ((UIncreasing(107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1], x1[1])), +(x2[1], 1))), ≥)∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (10) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (11)    ((UIncreasing(107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1], x1[1])), +(x2[1], 1))), ≥)∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (11) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (12)    ((UIncreasing(107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1], x1[1])), +(x2[1], 1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_16] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0, x1)), x2) → COND_107_0_MAIN_LOAD(&&(>=(x2, 0), <(x2, x0)), java.lang.Object(ARRAY(x0, x1)), x2)
    • (x2[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_107_0_MAIN_LOAD(&&(>=(x2[0], 0), <(x2[0], x0[0])), java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])), ≥)∧0 = 0∧[(-1)Bound*bni_13 + bni_13] + [bni_13]x0[0] ≥ 0∧0 = 0∧[(-1)bso_14] ≥ 0)

  • COND_107_0_MAIN_LOAD(TRUE, java.lang.Object(ARRAY(x0, x1)), x2) → 107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0, x1)), +(x2, 1))
    • ((UIncreasing(107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1], x1[1])), +(x2[1], 1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_16] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(107_0_MAIN_LOAD(x1, x2)) = [-1] + [-1]x2 + [-1]x1   
POL(java.lang.Object(x1)) = x1   
POL(ARRAY(x1, x2)) = [-1] + [-1]x1   
POL(COND_107_0_MAIN_LOAD(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2   
POL(&&(x1, x2)) = [-1]   
POL(>=(x1, x2)) = [-1]   
POL(0) = 0   
POL(<(x1, x2)) = [-1]   
POL(+(x1, x2)) = x1 + x2   
POL(1) = [1]   

The following pairs are in P>:

COND_107_0_MAIN_LOAD(TRUE, java.lang.Object(ARRAY(x0[1], x1[1])), x2[1]) → 107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1], x1[1])), +(x2[1], 1))

The following pairs are in Pbound:

107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]) → COND_107_0_MAIN_LOAD(&&(>=(x2[0], 0), <(x2[0], x0[0])), java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])

The following pairs are in P:

107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]) → COND_107_0_MAIN_LOAD(&&(>=(x2[0], 0), <(x2[0], x0[0])), java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])

There are no usable rules.

(6) Complex Obligation (AND)

(7) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]) → COND_107_0_MAIN_LOAD(x2[0] >= 0 && x2[0] < x0[0], java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])


The set Q is empty.

(8) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(9) TRUE

(10) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_107_0_MAIN_LOAD(TRUE, java.lang.Object(ARRAY(x0[1], x1[1])), x2[1]) → 107_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1], x1[1])), x2[1] + 1)


The set Q is empty.

(11) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(12) TRUE